SEBA SCERT Solutions for Class 7 Maths Chapter 1 Integers Exercise 1.2


SEBA SCERT Solutions for Class 7 Maths Chapter 1 Integers Exercise 1.2

 

SEBA SCERT Solutions for Class 7 Maths Chapter 1 Exercise 1.2 Integers in English and Assamese Medium modified and updated for academic year 2024-25. All the question-answers and solutions are revised on the basis of new syllabus and latest SEBA SCERT textbooks issued for curriculum 2024-25.

 



All the question answers with solutions are done according to latest SEBA SCERT Books for 2024-25.

 

SEBA SCERT Solutions for Class 7 Maths Chapter 1 Integers Exercise 1.2

 

Class: 7-

Mathematics

Chapter: 1

Exercise 1.2

Session:

SEBA 2024 - 25

Medium:

English, Assamese & Hindi

 

follow us on

Instagram
Facebook
Subscribe Our YouTube Channel

 

 

SEBA SCERT Solutions for Class 7 Maths Chapter 1 Integers Exercise 1.2

Exercise -1.2

     1.    Find the product.

(i)      5× (-2)  

(ii) (-3) ×7

(iii) (-4) ×(-3)

(iv)  (-129) × (-1)  

(v) (-12) ×0×(-17)

(vi) (-22) ×(-11) ×10

(vii)  13×(-5) ×(-3)

(viii) (-27) ×(-31) ×(-2)

(ix) (-3) ×(-1) ×(-2) ×5

Solution:

(i)     5× (−2) =−10

(ii)   (−3) ×7=−21

(iii)  (−4) × (−3) =12

(iv)  (−129) × (−1) =129

(v)   (−12)×0×(−17)=0 (anything multiplied by 0 is 0)

(vi)  (−22) ×(−11)×10

        =22×11×10

        =2420

 

(vii)                   13×(−5)×(−3)

=13×15

=195

 

(viii)                 (−27)×(−31)×(−2)

=27×31×(−2)

=837×(−2)

=−1674

 

(ix)                      (−3)×(−1)×(−2)×5

=3×1×(−2)×5

=3×(−2)×5

=−6×5

=−30

 

     2.    Verify whether true or false.

(i) 27×{(−5) +10}=27×(−5) +27×10

(ii) (−25) ×{(−16)+( −24)}=( −25) ×(−16) ×( −24)

(iii) a– (–b) = a+b, where a = (–75), b = (–20)

Solution:

(i)  27×{(−5)+10}=27×(−5)+27×10

LHS = 27×{(−5)+10}

         =27×5

         =135

RHS = 27×(−5)+27×10

         =−135+270

         =135

Since LHS = RHS, the statement is true.

(ii) (−25)×{(−16)+(−24)}=(−25)×(−16)+(−25)×(−24)

LHS = (−25)×{(−16)+(−24)}

         = (−25)×(−40)

         =1000

RHS = ( −25) ×(−16) ×( −24)

         = 400×( −24)

         = −9600

The left-hand side is 1000, and the right-hand side is -9600

Since LHS ≠ RHS, the statement is false.

(iii)                     a−(−b)=a+b, where 𝑎 = (−75),  and 𝑏=(−20)

Substitute 𝑎 and b into the equation,

(−75)−(−(−20))

=(−75)+20

= −55

Simplify the equation,

(−75)+20

=−55

So, the statement is true.

     3.     (i) Product of any two integers −33. If one of them is 11, what is the other number?

(ii) Product of any two integers is 51. If one of them is −1, what is the other number?

(iii)  What is the value of (−1×a) for any integer ‘a’?

Solution:

(i) Let the other number = x

Given,

`11\times x\=\-33`

`\Rightarrow x=\frac{-33}{11}`

`\Rightarrow x=-3`

So, the other number is −3.

(ii)  Let the other number = x

Given,

`-1\times x=51`

`\Rightarrow x=51/(-1)`

`\Rightarrow x=-51`



(iii) For any integer 𝑎,

−1×a=−a

So, the value of (−1×𝑎) is −a, which is the negation of 𝑎

     4.    Find the product applying appropriate property –

(i)   125×(−54) ×8  

(ii) (−25) ×(−97) ×4

(iii)   (−27) ×(−33)

(iv) 25×(−58)+( −58) ×(−35)

(v)  15×(−25) ×(−4) ×(−10)  (vi) (−57) ×(−19) ×57

Solution:

(i)  125×(−54)×8

Using the associative property of multiplication

= (125×8)×(−54)

= 1000×(−54)

= −54000

So, the product is −54000

(ii) (−25)×(−97)×4

Using the associative property of multiplication

= (−25)×4×(−97)

= −100×(−97)

= 9700

So, the product is 9700.

(iii) (−27)×(−33)

= (−27)×(−33)

= 27×33

= 891

So, the product is 891.

(iv) 25×(−58)+(−58)×(−35)

Using the distributive property,

= 25×(−58)+(−58)×(−35)

= (−58)×{25+(−35)}

=(−58)×(−10)

= 580

So, the product is 580.

(v) 15×(−25)×(−4)×(−10)

Using the associative property of multiplication

= {15×(−25)}×(−4)×(−10)

= (−375)×(−4)×(−10)

= 1500×(−10)

= −15000

So, the product is −15000.

(vi)   (−57)×(−19)×57

Using the commutative and associative properties

(−57)×57×(−19)

=(−57×57)×(−19)

=−3249×(−19)

=3249×19

=61731

So, the product is 61731

     5.    Evaluate with the help of distributive and associative property:

(i)    125×(54) ×8  

(ii) (−25) ×75×8×(−4)

(iii)  225×67×3

Solution:

(i)                          125×54×8

Using the associative property of multiplication,

(125×8)×54

=1000×54

=54000

So, the product is 54000.

(ii)                        (−25)×75×8×(−4)

Using the associative property of multiplication,

[(−25)×(−4)]×(75×8)

=100×600

=60000

So, the product is 60000.

(iii)                     225×67×3

Using the associative property of multiplication,

225×(67×3)

=225×201

We can break this down using the distributive property,

225×201

=225×(200+1)

=225×200+225×1

=45000+225

=45225

So, the product is 45225.

     6.    Evaluate using distributive property:

(i)  172×25+172×35

(ii) 159×82+159×16+159×2

(iii)  67×78+67×(−43)+67×(−25)

(iv) 999×99+99

(v) 58×47+94

Solution:

(i)  172×25+172×35

Using the distributive property,

172×(25+35)

= 172×60

= 10320

 

(ii) 159×82+159×16+159×2

Using the distributive property,

159×(82+16+2)

= 159×100

= 15900

(iii) 67×78+67×(−43)+67×(−25)

Using the distributive property,

67×(78+(−43)+(−25))

= 67×(78−43−25)

= 67×10

= 670

(iv) 999×99+99

= 99×(999+1)

= 99×1000

= 99000

(v)   58×47+94

 

We cannot directly apply the distributive property here because the second term does not have a common factor with the first term. Instead, let's compute it directly,

58×47+94

= 2726+94

= 2820

     7.     Justify whether right or wrong:

(i)    (−7) ×15×(−4)=( −7) ×15+(−7) ×(−4)

(ii) (−6)×23×(−2) = (−2)×(−6)×23

(iii) (−5)×{(−3)×2} = {(−5)×( −3)}×2

(iv)  (−175) × (−1) = −175

(v)  (−25) × ( − 4) × 0 = 100

Solution:

(i)  (−7) ×15×(−4)=( −7) ×15+(−7) ×(−4)

LHS: = (−7) ×15×(−4)

             = (−105)×(−4)

          = 420

RHS: = (−7)×15+(−7)×(−4)

          = −105+28

          = −77

Since 420 ≠ −77, the statement is wrong.

(ii)  (−6)×23×(−2) = (−2)×(−6)×23

Both sides are equivalent because of the commutative property of multiplication. Let's compute the product,

(−6) ×23×(−2)=(−6)×(−2)×23

 ⇒ 12×23 = 276

Both sides are indeed equal. So, the statement is right.

(iii)  (−5)×{(−3)×2} = {(−5)×( −3)}×2

LHS: = (−5)×{(−3)×2}

          = (−5) ×(−6)

          = 30

RHS: = {(−5)×(−3)}×2

          = 15×2

          = 30

Both sides are equal, so the statement is right.

(iv)   (−175) × (−1) = −175

Compute the product,

(−175)×(−1)=175

Since  175 ≠ −175, the statement is wrong.

(v)  (−25) × ( − 4) × 0 = 100

Compute the product,

(−25)×(−4)×0=100

Since any number multiplied by zero is zero,

(−25)×(−4)×0=0

Since 0 ≠ 100, the statement is wrong.