Class 11 Maths Chapter 1 Sets Exercise 1.3 Solutions in English Medium


Class 11 Maths Chapter 1 Sets Exercise 1.3 Solutions in English Medium

 


EXERCISE 1.3




 


EXERCISE 1.3

Class 11 Maths Chapter 1 Exercise 1.3 Question 1

       1.      Make correct statements by filling in the symbol  ⊂ or ⊄ in the blank spaces:

(i)                           { 2, 3, 4 } . . . { 1, 2, 3, 4, 5 }

(ii)                         { a, b, c, } . . . { b, c, d }

(iii)                       { x : x is a student of Class XI of your school } . . . { x : x student of our school }

(iv)                       { x : x is a circle in the plane } . . . { x : x is a circle in the same plane with radius 1 unit }

(v)                         { x : x is a triangle in a plane } . . . { x : x is a rectangle in the plane }

(vi)                       { x : x is an equilateral triangle in a plane } . . . . . .  { x : x is a triangle in the same plane }

(vii)                     { x : x is an even natural number } . . . . { x : x is an integer }

Solution:-

(i)                             { 2, 3, 4 }    { 1, 2, 3, 4, 5 }

(ii)                         { a, b, c, }    { b, c, d }

(iii)                       { x : x is a student of Class XI of your school }    { x : x student of our school }

(iv)                       { x : x is a circle in the plane }    { x : x is a circle in the same plane with radius 1 unit }

(v)                         { x : x is a triangle in a plane }   { x : x is a rectangle in the plane }

(vi)                       { x : x is an equilateral triangle in a plane }   { x : x is a triangle in the same plane }

(vii)                     { x : x is an even natural number }    { x : x is an integer }

 

Class 11 Maths Chapter 1 Exercise 1.3 Question 2

         2.      Examine whether the following statements are true or false :

(i)                 { a, b }  ⊄ { b, c, a }

(ii)                { a, e }   { x : x is a vowel in the English alphabet }

(iii)              { 1, 2, 3 } ⊂ { 1, 3, 5 }

(iv)              { a }  { a, b, c }

(v)                { a } ∈ { a, b, c }

(vi)              { x : x is an even natural number less than 6 } ⊂ { x : x is a natural number which divides 36 }

Solution:-

(i)                 False, each element of { a, b } is also an element of { b, c, a } .

(ii)                True , a, e are two vowels of the English alphabet .

(iii)              False, 2 ∈ { 1, 2, 3 }; however, 2 ∉ { 1, 3, 5 }

(iv)              True, Each element of { a } is also an element { a, b, c }

(v)                False, the element of { a, b, c } are a, b, c . Therefore { a} ⊂ { a, b, c }

(vi)              True, {  x : x is an even natural number less than 6 } = { 2, 4 } ⊂ { x : x is a natural number which divides 36 } = { 1, 2, 3, 4, 6, 9, 12, 18, 36 }

 

 

Class 11 Maths Chapter 1 Exercise 1.3 Question 3

         3.      Let A = { 1, 2, { 3, 4 }, 5 }. Which of the following statements are incorrect and why ? 

(i)                 { 3, 4 } ⊂ A

(ii)                { 3, 4 } ∈  A

(iii)              { { 3, 4 } } ⊂ A

(iv)              1 ∈ A

(v)                1 ⊂ A

(vi)              { 1, 2, 5 } ⊂ A

(vii)             { 1, 2, 5 } ∈ A

(viii)           { 1, 2, 3 }  ⊂ A

(ix)              Φ A

(x)                 Î¦ ⊂ A

(xi)              { Φ } ⊂ A

Solution:-

Given

   A = { 1, 2, { 3, 4 }, 5 }

(i)                           The statements { 3, 4 } ⊂ A  is incorrect because 3 ∈ { 3, 4 }; however 3  ∉ A .

(ii)                         The statements { 3, 4 } ⊂ A  is incorrect because { 3, 4 } is element of A .

(iii)                       The statements { { 3, 4 } } ⊂ A  is incorrect because { 3, 4 }  ∈ { { 3, 4 } } and { 3, 4 } ∈ A.

(iv)                       The statement 1 ∈ A is correct because 1 is an element of A.

(v)                         The statement 1 ⊂ A  is incorrect because an element of a set can never be a subset of itself .

(vi)                       The statement { 1, 2, 6 }  ⊂ A  is correct because each element of { 1, 2, 5 } is also an element of A.

(vii)                     The statement { 1, 2, 5 } incorrect because { 1, 2, 5 } is not an element of A.

(viii)                   The statement { 1, 2, 3 }  ⊂ A  is incorrect because 3 ∈ { 1, 2, 3 }; however 3 ∉ A .

(ix)                       The statement Φ ∈ A is incorrect because Φ is not an element of A .

(x)                         The statement Φ ⊂ A is correct because  Φ is a subset every set .

 

 

Class 11 Maths Chapter 1 Exercise 1.3 Question 4

         4.      Write down all the subsets of the following sets

(i)                 { a }

(ii)                { a, b }

(iii)              { 1, 2, 3 }

(iv)              Φ

Solution:-

(i)                           The subsets of { a } are Φ and { a } .

(ii)                         The subsets of { a, b } are Φ , {a}, {b} and { a, b } .

(iii)                       The subsets of { 1, 2, 3 } are Φ, {1}, {2}, {3}, {1, 2},  {2,3}, {1, 3} and { 1, 2, 3 } .

(iv)                       The only subsets of Φ is Φ .

 



Class 11 Maths Chapter 1 Exercise 1.3 Question 5   

          5.      How many elements has P(A), if A = Φ ?

Solution:-

We know that if A is a set with m elements i.e, n(A) = m, then n [P(A)] = 2m

  If A = Φ ,  then n(A) = 0.

 ∴ Hence, P(A) has one element .

 


Class 11 Maths Chapter 1 Exercise 1.3 Question 6

         6.      Write the following as intervals :

(i)                 { x : x  R, -4 < x ≤ 6 }

(ii)                { x : x  R, -12 < x < -10 }

(iii)              { x : x  R, 0 ≤ x < 7 }

(iv)              { x : x  R, 3 ≤ x ≤ 4 }

Solution:-

(i)                           { x : x  R, -4 < x ≤ 6 } = ( -4, ]

(ii)                         { x : x  R, -12 < x < -10 } = (-12, -10 )

(iii)                       { x : x  R, 0 ≤ x < 7 }  = [ 0, 7 )

(iv)                       { x : x  R, 3 ≤ x ≤ 4 } = [ 3, 4 ]

 


Class 11 Maths Chapter 1 Exercise 1.3 Question 7

           7.      Write the following intervals in set-builder form :

(i)                 ( -3, 0 )

(ii)                [ 6, 12 ]

(iii)              (6, 12 ]

(iv)              [ -23, 5 )

Solution:-

(i)                 ( -3, 0 ) = {x : x ∈ R, -3 < x < 0 }

(ii)                [ 6, 12 ]  = {x : x ∈ R, 6 ≤ x ≤ 12 }

(iii)              [ 6, 12 ]  = {x : x ∈ R, 6 ≤ x ≤ 12 }

(iv)               [ -23, 5 ) = { x : x ∈ R, -23 ≤ x ≤ 5 }

 


Class 11 Maths Chapter 1 Exercise 1.3 Question 8

         8.      What universal set (s) would you propose for each of the following :

(i)                 The set of right triangles.

(ii)                The set of isosceles triangles.

Solution:-

(i)                           For the set of right triangles, the universal set can be the set of triangles or the set of polygons.

(ii)                         For the set of isosceles triangles, the universal set can be the set of triangles or the set of polygons or the set of two-dimensional figures.

 


Class 11 Maths Chapter 1 Exercise 1.3 Question 9

         9.      Given the sets A = { 1, 3, 5 }, B = { 2, 4, 6 } and C = { 0, 2, 4, 6, 8 }, which of the following may be considered as universal set (s) for all the three sets A, b and C

(i)                           { 0, 1, 2, 3, 4, 5, 6 }

(ii)                         Φ

(iii)                       { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }

(iv)                       { 1, 2, 3, 4, 5, 6, 7, 8 }

Solution:-

(i)                           It can be seen that A ⊂ { 0, 1, 2, 3, 4, 5, 6 }

B ⊂ { 0, 1, 2, 3, 4, 5, 6 }

However, C ⊄ { 0, 1, 2, 3, 4, 5, 6 }

Therefore, the set { 0, 1, 2, 3, 4, 5, 6 } cannot be the universal set for the sets A, B and C .

(ii)                         A ⊄ Φ, B ⊄ Φ, C ⊄ Φ

Therefore, Φ cannot be the universal set for the sets A, B and C.

 

(iii)                       A ⊂ { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }

 

B ⊂ { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }

 

C ⊂ { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }

 

Therefore, the set { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
} is the universal set for the sets A, B and C.

 

(iv)                       A ⊂ { 0, 1, 2, 3, 4, 5, 6, 7, 8 }

 

B ⊂ { 0, 1, 2, 3, 4, 5, 6, 7, 8 }

           However, C ⊄ {1, 2, 3, 4, 5, 6, 7, 8 }

Therefore, the set { 1, 2, 3, 4, 5, 6, 7, 8 } cannot be the universal set for the sets A, B, and C.